

STEPPING UP IN THE NEW NORM

SPE Asia Pacific Health, Safety, Security, Environment and Social Responsibility Conference

4-6 April 2017 • Kuala Lumpur, Malaysia

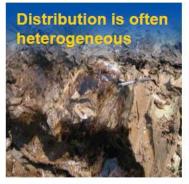
SPE-185195 Rapid Field Analytical Methods for Total Petroleum Hydrocarbons

Deyuan Kong, Thomas Hoelen and Sara Mcmillen, Chevron Energy Technology Company USA;

Timothy Vidra, Sarah Chitra, Dicky Saputra, Tyas Kuswardani, Yohanes Kurniawan, Yusak Pandjatan, Adi Widiyanto, PT. Chevron Pacific Indonesia Cari Armpriester Chevron Environmental Management Company, USA Melda Mardalina Ministry of the Environment, Indonesia

Project Background

Opportunity

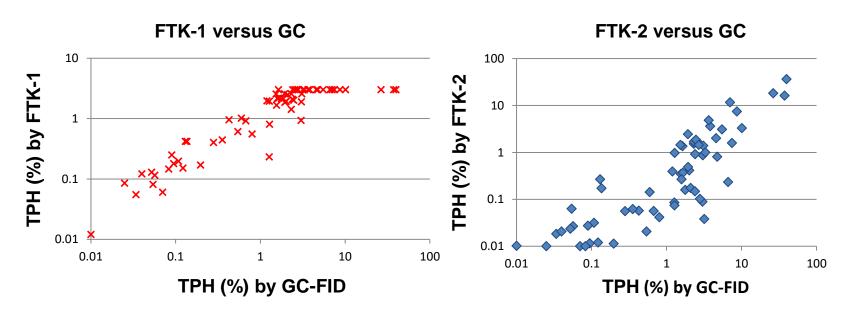

Soil samples from hydrocarbon impacted soil in CPI operations need to be tested for Total Petroleum Hydrocarbon (TPH)

- Delays in sample analyses and decision making due to thousands of soil samples per week needing analysis
- Lab analysis can take 2-4 weeks

Approach

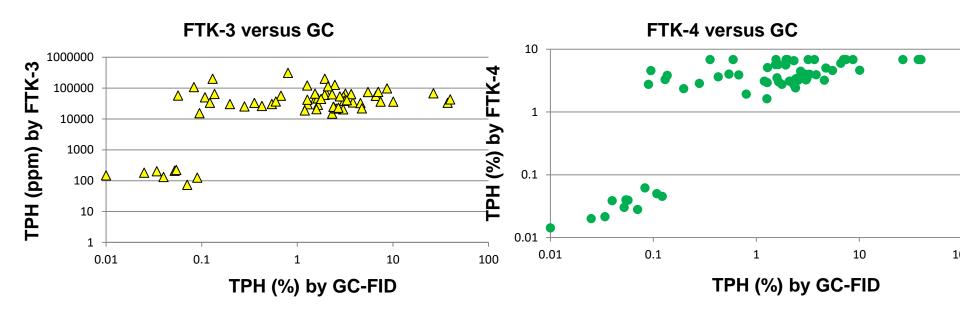
Development of rapid TPH analytical method to increase accuracy and efficiency

- 1) real-time remediation process monitoring
- 2) reducing the number of samples going to lab



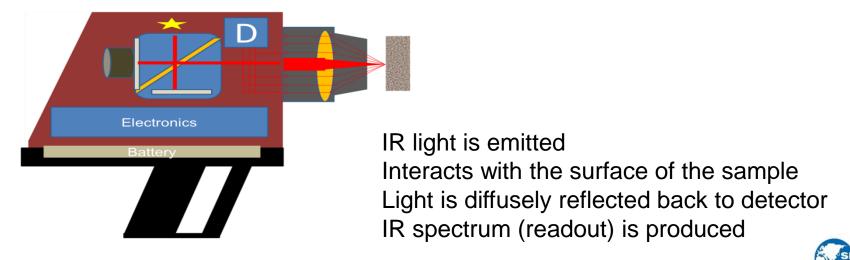
Six FTKs have been Selected and tested with field soil samples

	Method	Extraction	Extraction Solvent	Data Quality
FTK-1	Turbidity	Yes	Methanol	semi-quantitative screening
FTK-2	Infrared	Yes	Hexane	quantitative
FTK-3	Ultraviolet fluorescence	Yes	Methanol	semi-quantitative screening
FTK-4	Colorimetry	Yes	Dichloromethane	semi-quantitative screening
FTK-5	Visual	Yes	Heptane	qualitative screening
FTK-6	Visual	No	Water	qualitative screening

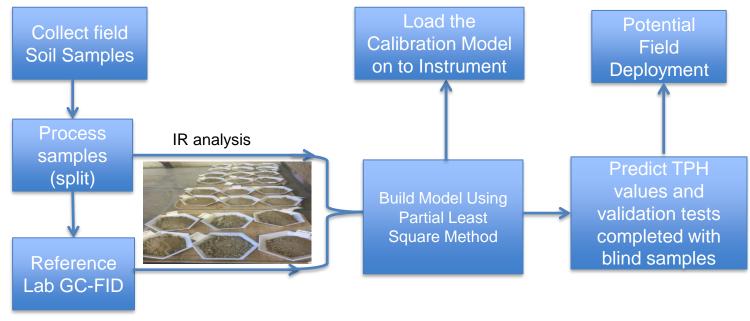

FTKs Performance Evaluation Results

FTK-1 and FTK-2 demonstrated the good correlation with referenced lab GC data

Six FTKs have been Selected and tested with field soil samples



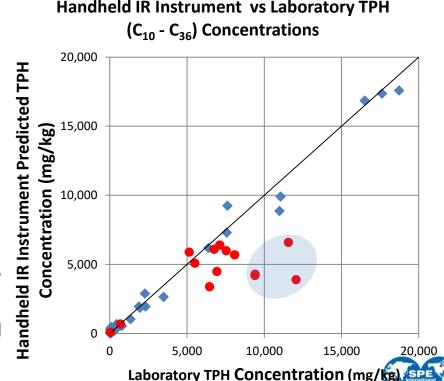
FTK-3 and 4 might be able to use in field settings after proper calibration FTK-6 showed non-detect for all samples due to matrix effects



Handheld IR Instrument for non-destructive TPH measurement

- Portable handheld IR instrument
- Diffuse reflectance of IR light reflected from the sample
- The world's first handheld instrument for the direct measurement of TPH in soil
- User simply pulls the trigger for a 15 second reading of TPH (C₁₀-C₃₆) in mg/kg

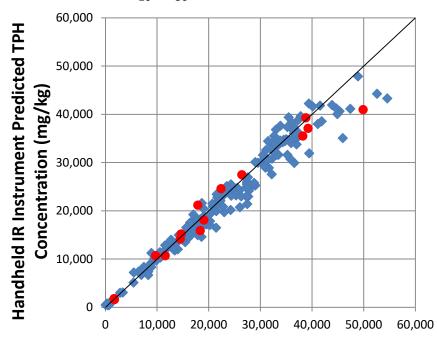
Field Pilot Approach


Pilot Studies Results Evaluation- Minas Field

Calibration model completed with 111 soil samples from Minas field at TPH range 0-120,000 mg/kg

Using Minas calibration model vs. GCFID Data for validation Test Validation Samples (•)& Calibration Samples (•)

Outliner analysis- spectrum suggests the high clay contents of those samples


Detection limit of this model- 170 mg/kg

SPE-185195 • Rapid Field Analytical Methods for Total Petroleum Hydrocarbons • Deyuan Kong

Pilots Studies Results Evaluation- Duri Field

Handheld IR instrument vs Laboratory TPH $(C_{10} - C_{36})$ Concentrations

Calibration model completed with 200 soil samples from Duri field at TPH range 0-50,000 mg/kg

Using Duri calibration model vs. GCFID Data for validation Test
Validation Samples (*)& Calibration Samples (*)

Detection limit of this model- 380 mg/kg

Laboratory TPH Concentration (mg/kg)

SPE-185195 • Rapid Field Analytical Methods for Total Petroleum Hydrocarbons • Deyuan Kong

Accuracy for various assay ranges for calibration samples for Duri field vs. Minas field

Duri site (limited calibration range up to 5%)

Assay Range	RMSECV (mg/kg	Relative Standard Deviation*
(mg/kg TPH)	TPH)	(%)
0 - 5,000	376	n/a
5,000 – 15,000	930	≤ 19
15,000 – 20,000	1,390	≤ 9
20,000 – 30,000	2,107	≤ 11
30,000 – 50,000	2,815	≤ 9

Minas (wide range of calibration range up to 12%)

Assay Ranges (mg/kg TPH)	RMSECV mg/kg TPH	Correlation Coefficients (r ²)
0 - 3,000	170	0.92
3,000 - 5,000	184	0.96
5,000 - 15,000	410	0.98
15,000 - 30,000	803	0.99
30,000 - 120,000	2,375	0.99

RMSECV: Root-mean-square Error of Cross-Validation

Summary

❖Portable handheld IR Instrument will enable rapid and accurate delineation of CPI sites & allows real time process monitoring for different remediation technologies

Significant time reductions

- Real-time process monitoring
- Rapid, field based testing
- Improve data density for site assessment
- Less waiting time for soil movement

Improved Safety

 Prevents worker exposure and generation of waste by eliminating the use of solvents (used in the lab and in other field test methods)

STEPPING UP IN THE NEW NORM

SPE Asia Pacific Health, Safety, Security, Environment and Social Responsibility Conference

4-6 April 2017 • Kuala Lumpur, Malaysia

Acknowledgements

The authors gratefully acknowledge the support and discussion from Ziltek Pty. Ltd and ALS lab in Bogor, Indonesia for deployment of Handheld IR Instrument