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Total petroleum hydrocarbons typically comprise a mixture of short- and me-
dium-length hydrocarbon compounds that are derived from crude oil. The 
less volatile components of petroleum hydrocarbons can become environ-

mental contaminants in the event of slow leakage from storage tanks or as the result 
of a rapid and catastrophic oil leak due to an accident. Such pollution may remain in 
the environment for extended periods, often being toxic to wildlife, flora, and humans. 
With urban growth, city fringes are gradually encroaching on areas that were formerly 
disused or predominantly industrial in nature. While large-scale contamination from 
petroleum production related accidents usually receives considerable press coverage 
and requires urgent or immediate attention for remediation, many sites have been con-
taminated by petroleum hydrocarbon leakage from previous industrial uses and are 
much more common. For example, fuel from underground storage tanks at current 
and previous service station sites often leaks into soils and the site requires remedia-
tion as a prerequisite for urban development or to avoid groundwater contamination. 

Abbreviations: DRIFT, diffuse reflectance infrared Fourier transform; GC-FID, gas chroma-
tography with flame ionization detection; IR, infrared; MIR, mid-infrared; NIR, near infra-
red; PLS, partial least squares; R2, coefficient of determination; RPD, ratio of prediction 
deviation; SOM, soil organic matter; TPH, total petroleum hydrocarbon.

Partial least squares (PLS) calibration models, from diffuse reflectance infrared 
Fourier-transform (DRIFT) spectra, were developed for the prediction of total 
petroleum hydrocarbon (TPH) concentrations in contaminated soils. Soils 
were collected from sites in southeastern Australia known to be contaminated 
with TPH. Regression models were derived for concentration ranges of 0 
to 32,600, 0 to 5000, 0 to 15,000, and 15,000 to 32,600 mg kg−1. For each 
range, PLS models using selected near-infrared (NIR) and mid-infrared (MIR) 
frequencies were tested. The aliphatic alkyl stretching vibration regions were 
the most sensitive to TPH: NIR frequencies at 4500 to 4100 cm−1 and MIR at 
3000 to 4600 cm−1. The MIR range included two –CH3 peaks, one at 2950 
cm−1 and the other near 2730 cm−1, having strong correlation with TPH at 
low and high TPH concentrations, respectively. These peaks were considered 
to be either weak or absent in natural soil organic matter relative to the usual 
–CH2 region at 2930 to 2850 cm−1. The PLS regression analysis using the 
combined 2980 to 2950 and 2777 to 2650 cm−1 MIR frequency regions for 
the 0 to 15,000 mg kg−1 set resulted in a ratio of prediction deviation of 3.7 
(“analytical quality”), coefficient of determination (R2) = 0.93, and root mean 
square error of cross-validation of 564 mg kg−1. Using these MIR frequencies, 
the DRIFT infrared technique showed the potential to be a rapid and accurate 
nondestructive method to determine TPH concentrations in contaminated 
soils, potentially adaptable to in-field use.
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Government jurisdictions have set soil quality standards for TPH, 
above which further investigation, risk assessment, or remediation 
is required. In Australia, health investigation levels for aliphatic 
TPH concentrations in soils, set to protect human health by the 
National Environmental Protection Council, vary from 5600 to 
28,000 mg kg−1 for C16 to C35 and up to 280,000 mg kg−1 for 
>C35 depending on land use (National Environment Protection 
Council, 1999a). Thus, sites contaminated by TPH require analy-
sis of the soils for these compounds before the commencement of 
risk assessment or remediation.

Currently, most soil analyses for TPH are performed via 
supercritical fluid extraction of the TPH components from the 
soil, followed by gas chromatography with flame ionization de-
tection (GC-FID). Although this method is the industry stan-
dard, as required by regulatory agencies (National Environment 
Protection Council, 1999b; USEPA, 2003; ISO, 2004), it is time 
consuming and requires a nationally accredited laboratory and 
thus is not suited to rapid analysis or on-site applications. A sim-
pler and faster alternative method for screening contaminated 
sites for total TPH concentrations would be desirable to speed 
up risk assessment processes and to assist remediation.

Infrared (IR) spectroscopy has potential for the simple 
and rapid determination of TPH concentrations. One standard 
method, using Freon 113 as a soil extractant and subsequent 
analysis of the extracted TPH by MIR attenuated total reflec-
tion, has been proposed (USEPA, 1978). Because of restrictions 
on the use of ozone-depleting substances, however, this method 
was modified to use non-ozone-depleting substances for the ex-
traction step (Hazel et al., 1997; Freeman and Krishnan, 2007; 
ASTM, 2011). The extraction step is, however, somewhat te-
dious to carry out, is not rapid, and does not lend itself to adap-
tation for in-field application as a direct measurement method.

The development of an alternative, faster IR technique 
for the prediction of TPH would have considerable benefits in 
terms of saving money and time for site risk assessment and re-
mediation. A rapid, accurate, and simple-to-use method, based 
on diffuse reflectance infrared Fourier-transform (DRIFT) 
spectroscopy of undiluted whole, neat (without the use of any 
dispersing matrix such as KBr powder) soils combined with mul-
tivariate regression such as partial least squares (PLS) regression, 
offers a means to achieve this requirement. Further advantages 
can be made by adapting the DRIFT-PLS technique from labo-
ratory-based spectrometers to in-field measurements using new 
hand-held IR technologies.

An important advantage of the DRIFT technique is that 
unprocessed, neat, whole soil samples can be studied directly, 
where the samples are simply placed under the incoming IR 
beam and the reflected signal is analyzed; thus, often no sample 
preparation is required. Immediacy in TPH analysis (on-site, 
rapid, or real-time techniques) is not only important where a 
response action is needed quickly after an accident to minimize 
major environmental damage but also for urban development 
where delays to construction can be costly. For this reason, sam-
ples need to be presented as received (neat, unground samples) 

in an attempt to develop a rapid technique ultimately adaptable 
for in-field application.

In practice, both the NIR (12,500–4000 cm−1) and MIR 
(4000–400 cm−1) spectral ranges can be used for TPH pre-
diction when combined with PLS regression. The combined 
DRIFT spectroscopy and PLS regression technique proposed 
here for quantification of TPH draws on procedures similar to 
those used to determine other soil properties on neat soils using 
MIR or NIR spectroscopy ( Janik and Skjemstad, 1995; Janik et 
al., 1998; Reeves et al., 1999, 2006; Viscarra-Rossel et al., 2006; 
Kuang et al., 2012). A literature search on the use of IR for TPH 
prediction in soils, and in particular using unprocessed, neat, 
whole soils, resulted in very few studies. The first reported IR 
study on the prediction of TPH in contaminated soils by Mal-
ley et al. (1999) demonstrated the potential of NIR for routine 
TPH determination, an application later confirmed by others 
using PLS and other multivariate methods (Chakraborty et al., 
2010, 2012). Near-infrared spectroscopy together with PLS 
was also used by Sorak et al. (2012) for the prediction of diesel 
and oil concentrations in contaminated soil samples. While soil 
moisture was seen as a major issue in analyzing soils for TPH 
using NIR (Malley et al., 1999; Chakraborty et al., 2010) and 
MIR (Hazel et al., 1997), these studies did not attempt to exam-
ine the sensitivity of various IR frequency regions with regard 
to TPH concentration ranges. The MIR studies by Hazel et al. 
(1997) did, however, demonstrate the adverse effect of moisture 
on relatively small sample sets and showed that it was possible to 
counter the negative effects of soil moisture by the use of PLS re-
gression methods. Furthermore, Chakraborty et al. (2012) tested 
the effects of different clay contents and levels of organic C but 
also did not investigate the impacts of specific spectral frequen-
cies. Our study aimed to examine the impact of various specific 
frequencies in the usual alkyl frequency range and to test each 
of these frequencies on the regression precision and accuracy for 
low to very high ranges of TPH concentrations.

Central to the use of the IR–DRIFT method is that both 
the NIR and MIR spectra are sensitive to alkyl functional chemi-
cal groups in organic materials, including TPH compounds 
(Hazel et al., 1997; Malley et al., 1999; Forrester et al., 2009; 
Chakraborty et al., 2010). The sensitivity of IR spectra to organic 
aliphatic components therefore provides the possibility of accu-
rately screening soils for TPH contamination.

Although rapid, there are inherent problems with the appli-
cation of the DRIFT technique to whole soil analysis for TPH. 
The first problem is the overlap of TPH-sensitive IR peaks with 
those of naturally occurring soil organic matter (SOM), particu-
larly those associated with the alkyl –CH2 groups. Identification 
of spectral peaks unique to TPH can thus be difficult (Forrester 
et al., 2009). Apart from the interference by SOM peaks, there is 
also overlap of TPH peaks in the MIR by spectra of soil carbon-
ates. Other known problems are due to the physical effects inher-
ent when examining soils, for example, shielding of the internal 
structure of soil microaggregates to IR radiation and heterogeneity 
of the samples. Variable soil water content can also be a problem 
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in field situations where it can confound predictions, particularly 
where the IR beam is reflected from high levels of surface liquid 
(Hazel et al., 1997; Gallagher et al., 2008), or cause a mismatch of 
the spectra with the predictive model(s) when models have been 
derived from dry samples (Gallagher et al., 2008). Drying the sam-
ples would add considerable sample preparation time (Hazel et al., 
1997). Fortunately, some of these problems can be minimized by 
additional principal components to the PLS models or by careful 
frequency range selection. This study thus aimed to determine the 
potential accuracy and detection limits of predicted TPH concen-
tration using IR spectroscopy.

MATERIAL AND METHODS
Samples
�Reference Materials for Spiking with Total 
Petroleum Hydrocarbons

Two standard reference soils were used: an organic silty loam 
ACU-1 (Agrixeroll) from Gumeracha (South Australia) and a 
calcareous sandy soil (Calcixerollic Xerochrept) from Cungena, 
Eyre Peninsula (South Australia). The basic soil properties were 
determined according to standard methods (Rayment and Hig-
ginson, 1994) and are presented in Table 1. The soils were dried 
at 40°C and sieved to <2 mm. Soil organic matter extracted from 
a reference soil (CSIRO standard soil SS6) using HF was avail-
able for use as a SOM “signature” (Skjemstad et al., 1998). Refer-
ence hydrocarbons (TPH) were crude oil (light crude blend, BP 
oil refinery), diesel (Navy diesel, BP oil refinery), and n-hexane 
(Sigma-Aldrich, 95% spectrophotometric grade) were used as 
spectral representatives of TPH. The crude oil was also used for 
the spiking experiments. Diluted aliquots of the crude oil stock 
solution were prepared with 0, 0.025, 0.05, 0.10, 0.25, 0.50, 0.70, 
1.00, 1.20, 1.50, 2.00 and 2.50 mL of stock crude oil diluted with 
cyclohexane to give 10 mL total volume of each aliquot, equivalent 
to concentrations of 0 to 25,000 mg kg−1. Aliquots of the crude oil 
stock solutions were mixed with fixed weights of each sample, 10 g 
for the Cungena soil and 2.5 g for the ACU-1 soil, in a tumbler 

for 12 h to give spiked soils with concentrations ranging from 257 
to 25,000 mg kg−1. The samples were allowed to dry for 18 h at 
40°C to remove all traces of the cyclohexane solvent, and the con-
centrations were confirmed using solvent extraction and GC-FID. 
Spectra of reference minerals commonly found in soil were also 
determined, i.e., calcite, kaolinite, smectite and quartz, as well as 
those of the diesel, crude oil, and n-hexane.

Field-Contaminated Soils
A set of 205 samples was collected for calibration model-

ing from four sites in southern Australia: Victoria (45 from Mel-
bourne and 89 from Ballarat, noted as M and B, respectively), 
New South Wales (41 from near Sydney, noted as A), and 30 from 
South Australia (near Adelaide, noted as S). These are described 
in Table 2. The soils at each site had generally been deposited fill 
material from other contaminated soil locations, as is a common 
practice at industrial sites, and were therefore extremely hetero-
geneous, as is typical for urban contaminated sites. At each site, 
samples were taken from predetermined sampling points chosen 
from site maps or pits. Sampling was conducted at various depths 
on the pit faces and placed into glass jars, lightly mixed by hand, 
and then split, one for laboratory analysis and the other placed in 
cold storage at 4°C for spectral scanning.

Laboratory TPH analyses were performed using the GC-
FID method (Sadler and Connell, 2003) on one of the two 
soil subsamples by an accredited analytical reference laboratory 
(ALS Laboratories, Campbell Bros. Ltd). The contaminated soil 
data and descriptions are presented in Table 2.

Infrared Spectra
The MIR and NIR DRIFT spectra were scanned with a Perki-

nElmer Spectrum-One FTIR spectrometer. The spectrometer was 
equipped with an extended-range KBr beam splitter, a high-inten-
sity ceramic source, a deuterium triglycine sulfate Peltier-cooled 
detector, and a 60-sample autosampler (Auto-Diff, Pike Tech-
nologies). Soil subsamples (approximately 100 mg) were placed, as 

Table 1. Reference standard soils ACU-1 and Cungena showing sampling depth, total organic C (TOC), pH (CaCl2), clay, silt, sand, 
and carbonate concentrations, and major mineral composition according to infrared spectra.

Soil pH TOC Clay Silt Sand Carbonate Dominant mineralogy

g kg−1  ————————————— % ————————————— 
ACU-1 4.7 25.6 21 69 10 0 illite, smectite, kaolinite, minor quartz
Cungena 7.6 1.2 14 4 82 36 illite, smectite, kaolinite, calcite

Table 2. Contaminated soils from Victoria (Melbourne and Ballarat), Sydney, and Adelaide (M, B, A and S, respectively). Data 
show sampling depth, number of samples (n) available, maximum total petroleum hydrocarbon (TPH) content, SD of TPH, and 
site description.

Soil Depth n† Max.TPH SD Description

m — mg kg−1 —

M 0–2.5 45 30,000 6848 “fill material” from unknown sources and quaternary-aged Melbourne sand; <1 m thick; hard, orange/brown, 
high plasticity sandy clay; some rich organic topsoil; silty sand to clayey sand at depth with low plasticity

B 1–2.5 89 32,600 4600 saw-mill site with heavy TPH contamination at various point sources; dark brown surface soil with reddish-
yellow clay subsoil; USDA classification Alfisol

A 0–1 41 12,200 2560 old gas works and workshops, heavy contamination of TPH; brown sandy loam subsoil under gravel overburden

S – 30 6,200 1981 two piles of contaminated waste: Pile 1, yellow to red sand with carbonate nodules throughout; Pile 2, darker 
soil with organic material, clay, ink waste

† Number of samples actually used was less than this number due to missing data and outliers.
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received, into 10-mm diameter stainless steel sample cups, leveled, 
and loaded into the autosampler. Spectra were initially recorded 
on as-received samples in the frequency (wavenumber) range 7800 
to 450 cm−1 at a resolution of 8 cm−1, using a silicon carbide refer-
ence disc (PerkinElmer Life and Analytical Sciences Pty Ltd) as 
a background (assumed to have a reflectance = 1 or 100%). The 
scans were repeated after allowing the subsamples to air dry over-
night in their sample cups. Spectra were expressed in pseudo absor-
bance (A) units (where A = log10 reflectance−1)

Spectra were converted from the PE instrument (.SP) for-
mat into Grams (.SPC) files using the Grams-AI software (Ther-
mo Fisher Scientific) before importing into Unscrambler V9.8 
(Camo AS) spreadsheets for regression analysis. Spectral assign-
ments were based on MIR soil studies by Nguyen et al. (1991) 
and Janik et al. (1998)

Partial Least Squares Regression Modeling
Partial least squares regression models were derived from 

the DRIFT spectra (x, predictor variables) and analytical TPH 
data (y, dependent variables). Model training was validated by 
cross-validation (Wold et al., 1983; Geladi and Kowalski, 1986) 
and by prediction validation using a randomly selected “test” set 
of 50 samples in the TPH range 0 to 15,000 mg kg−1. Prediction 
models for TPH concentration were developed for the reference 
soil–TPH mixtures and the field-contaminated soils.

Spectra were preprocessed with mean centering and the Un-
scrambler linear Detrend correction across the full spectral range. 
Different PLS models were performed across the following spec-
tral ranges to assess the impact of the various frequencies on the 
regression accuracy: (i) the NIR first-overtone 4540 to 4060 cm−1 
frequency region; (ii) the MIR 3000 to 2600 cm−1 range corre-
sponding to the alkyl –CH2 and –CH3 fundamental stretching 
frequencies, including the weak peak at 2730 cm−1; (iii) the MIR 
2980 to 2950 cm−1 shoulder corresponding to the –CH3 asym-
metric stretching frequency; (iv) the MIR 2880 to 2800 cm−1 
range corresponding to the alkyl –CH2 fundamental stretching 

frequency; (v) the MIR 2730 cm−1 peak; and (vi) the MIR 2980 to 
2950 cm−1 shoulder plus the 2730 cm−1 peak (2770–2650 cm−1).

Partial least squares models were cross-validated against the 
measured TPH values during model training until a minimum re-
gression residual and maximum coefficient of determination (R2) 
were obtained with the optimum number of PLS factors. The 
PLS regression statistics are reported in terms of R2, root mean 
square error (RMSE), and the ratio of prediction deviation (RPD 
= SD/RMSE), where SD is standard deviation. The value of RPD 
was used to indicate the quality of the predictions, where values of 
RPD < 1.5 are considered “poor”, 1.5 to 2.0 considered “indica-
tor,” 2.0 to 3.0 considered “good”, and >3.0 as “analytical” quality 
(Sudduth and Hummel, 1996; Chang et al., 2001; Fearn, 2002; 
Janik et al., 2009). Further validation was performed by random 
selection of a separate 50- sample field “test” set from the set of 
199 (0–15,000 mg kg−1) samples and predicting TPH concen-
tration from a calibration built from the remaining samples.

Results and discussion
Spectral Interpretation

Figure 1 depicts portions of the NIR (5000–4000 cm−1) and 
MIR (4000–1250 cm−1) DRIFT spectra of liquid diesel, crude 
oil, and n-hexane deposited as liquid films onto a powdered KBr 
substrate. These first two hydrocarbon compounds often form a 
significant portion of TPH contaminants in soils. Peaks due to the 
fundamental alkyl stretching vibrations were observed in the fre-
quency region near 2964 cm−1 (–CH3), 2930 cm−1 (–CH2), and 
2855 cm−1 (–CH2). They are close to, but slightly higher than, 
those reported by Kalme et al. (2008) for diesel (2955, 2924, and 
2855 cm−1), with the increased frequency observed possibly due 
to the effects of specular reflectance distortion on the liquid films. 
Corresponding combination or overtone vibrations can be seen in 
the NIR for diesel at 4390, 4329, and 4257 cm−1.

Interestingly, a small peak was observed for the liquid hy-
drocarbons near 2730 cm−1. This peak has been previously inter-
preted as being due to the –CH stretching mode of the –CH=O 

Fig. 1. Portions of the Fourier-transform near-infrared (5000–4000 cm−1) and mid-infrared (4000–2000 cm−1) spectra of diesel, crude oil, and 
n-hexane in powdered KBr.
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aldehyde group in diesel after enzymatic degradation (Kalme et 
al., 2008). Aldehyde compounds, however, must also contain the 
–C=O group, which absorbs near 1740 cm−1. Because such a 
carbonyl peak was not observed for crude oil or diesel spectra in 
this study, and importantly was not observed in n-hexane, which 
also shows the 2730 cm−1 peak, an alternative explanation is 
needed. The explanation of the 2730 cm−1 peak proposed here is 
that it is probably due to an overtone of the –CH3 deformation 
vibration near 1377 cm−1. As such, this peak has potential use 
for the detection and quantification of TPH because it is very 
weak in natural SOM compared with the fundamental alkyl in-
tensities (Forrester et al., 2011).

The peaks and general spectral patterns of the liquid film 
hydrocarbons on the surfaces of a nonabsorbing matrix such as 
sand or, in this case, KBr depicted in Fig. 1 are, however, differ-
ent from those of hydrocarbons. Liquid films are characterized 
by shifts, or distortions, of the usual spectral features due to the 
effects of a refractive index in the specular reflectance compo-
nent of diffuse reflectance (Griffiths and Fuller, 1982). The “real” 
spectrum of a hydrocarbon, sorbed onto a matrix such as soil, 
should in fact resemble that of an alkyl material sorbed onto clay 
or SOM in soil rather than the spectra of liquid films as illustrat-
ed in Fig. 1. Figure 2 depicts the Fourier-transform MIR spectra 
of diesel sorbed onto a clay (a smectite) and onto a sand in the 
alkyl stretching region compared with that of natural SOM ex-
tracted from a soil (standard soil SS6).

The fundamental –CH3 stretching vibration at 2964 cm−1 
in the diesel film was shifted down to a weaker peak at 2954 cm−1, 
the –CH2 peak at 2938 cm−1 shifted to 2925 cm−1 (now far 
stronger), the 2872 to 2861 cm−1 peak envelope shifted to 
2854 cm−1, and the peaks near 2730 and 2670 cm−1 were sig-
nificantly reduced in intensity. These changes were attributed to 
a change in the reflection mechanism from specular reflectance 
to diffuse reflectance, and the spectra now closely resembled 
those of SOM and agreed with those of Kalme et al. (2008). This 

observation has implications in real soil systems contaminated 
with TPH where the amount of clay or other absorbing matrix 
in a sample can, for some soil types, have a profound effect on the 
intensity of the measured TPH spectrum.

Soil organic matter alkyl material is mostly long-chain 
–CH2 groups in cell wall lipid material, with relatively few –CH3 
groups ( Janik et al., 1998). Because medium-length alkanes, such 
as C15 to C28 diesel type of compounds, have a higher propor-
tion of methyl –CH3 to –CH2 than SOM, the relatively stron-
ger peaks attributed to methyl groups in TPH may be able to be 
used to predict TPH even in the presence of SOM. The –CH3 
2954 cm−1 peak in the diesel–clay spectrum in Fig. 2 is clearly 
stronger than the weak shoulder in this region for SOM. This is 
confirmed by the strong peak remaining at 2956 cm−1 resulting 
from the subtraction of the SOM spectrum from the diesel–clay 
spectrum in Fig. 2. The contribution from –CH3 groups in the 
shorter C chains of diesel also appeared relatively much stronger 
than in the longer chain SOM molecules.

In addition to the possible effects of surface reflection and 
interference by SOM peaks with those of TPH, there is also the 
question of overlap or masking by soil mineral components. Rep-
resentative MIR spectra of some reference minerals are illustrat-
ed in Fig. 3. Most soils have significant amounts of one or more 
of these components, represented in the DRIFT spectra by peaks 
due to quartz (sand), 2:1 layer aluminosilicate clays (for example 
smectite and illite, often with interlayer water), kaolinite (a non-
hydrated 1:1 layer aluminosilicate clay), and calcite (CaCO3) 
(Nguyen et al., 1991).

In general, most soil minerals are free of MIR absorption 
peaks in the TPH alkyl stretching region. There is, however, con-
siderable overlap due to carbonate minerals near 2980 to 2870, 
2600 to 2500, and 1810 cm−1 and in the alkyl deformation 
region near 1470 to 1360 cm−1 with the fundamental –CO3 
stretching vibration near 1450 cm−1 (shifted by specular reflec-
tance distortion to 1375 cm−1).

Fig. 2. Fourier-transform mid-infrared (3000–2600 cm−1) spectra of 
diesel on sand, diesel on clay, soil organic matter (SOM) from HF 
extraction of Soil SS6, and the subtracted spectrum of diesel on clay 
minus SOM.

Fig. 3. Diffuse-reflectance infrared Fourier-transform spectra of the 
reference minerals calcite, kaolinite, smectite, and quartz.
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The spectra for the standard reference soils from Cungena 
and ACU-1 are depicted in Fig. 4. These two soils were used 
because they represented extremes of some major components 
found in soils that may impact on the spectral prediction of 
TPH. For example, the Cungena soil was high in carbonate and 
sand-sized particles. In contrast, the ACU-1 soil was high in 
SOM and silt. Other soils could have been chosen but these two 
were thought sufficient to demonstrate the possible interference 
of these soil characteristics for TPH predictions. The spectrum 
of the Cungena soil shows peaks due to smectite, illite, kaolinite 
clays (Al–OH at 3695 and 3630 cm−1 and interlayer water at 
3400 cm−1), and carbonate (calcite near 2980–2870, 2518, and 
1800 cm−1) (see inset in Fig. 4). There is also evidence for some 
minor SOM alkyl peaks near 2930 and 2850 cm−1. The ACU-1 
soil was also characterized by smectite, illite, and kaolinite and 
SOM but no carbonate. Water peaks, possibly associated with 
SOM, smectite, and disordered illite, were observed near 3600 
to 3000 cm−1. Peaks in the rest of the spectrum, from about 
2000 to 450 cm−1, were due mostly to quartz.

The spectrum for the TPH field-contaminated soils across 
the full NIR plus MIR frequency range is characterized by peaks 

due to smectite and illite clays, organic components 
(SOM plus TPH alkyl peaks), and carbonate (Fig. 5). 
The peaks below 2000 cm−1 are due mostly to quartz. The 
NIR spectra showed the presence of water (5220 cm−1), 
kaolinite (7060 and 4530 cm−1), and alkyl peaks (4320, 
4250, and 4190 cm−1). The water peaks were thought to 
be associated with the SOM and clays. Peaks due to alkyl 
components in SOM and TPH are shown in more detail 
in the inset.

Regression Analysis
Standard Spiked Soils

According to Grabiec-Raczak et al. (2005), IR-based 
methods have typically measured the absorbance at a single 
frequency (e.g., close to 2930 cm−1), which corresponds 
to the stretching of aliphatic –CH2 groups. Others have 

used multiple frequencies including absorption bands at about 
2960 cm−1 for –CH3 groups. Hazel et al. (1997) showed that 
there was a strong reduction in the TPH NIR intensity with re-
spect to soil water content, but it was still possible to predict diesel 
concentrations in wet soils from MIR spectral frequencies in the 
3500 to 2500 cm−1 range using PLS regression models. In con-
trast, their results using univariate regression models based solely 
on the band at 2850 cm−1 were meaningless.

The PLS regression coefficients for the models developed 
for the two standard soils spiked with crude oil are depicted 
in Fig. 6. The plots show peaks in the NIR (4388, 4330, and 
4254 cm−1) and MIR (2950, 2920, and 2850 cm−1) spectral 
regions due to the high correlation between spectra and TPH 
concentration.

The results of cross-validation for the ACU-1 and Cungena 
soils are presented in Table 3. The coefficient of determinations 
(R2) for the full MIR 3000 to 2650 cm−1 spectral region were 
0.96 and 0.90, respectively, for the two soils. Similar regressions 
were obtained for the ACU-1 soil by using only the narrow regions 
near 2980 to 2950 cm−1 and at 2750 to 2650 cm−1. The optimum 
model for Cungena (R2 = 0.94) was obtained with a model us-

ing only the 2980 to 2950 cm−1 frequencies, but signifi-
cantly worse accuracy resulted from using only the 2750 
to 2650 cm−1 region (R2 = 0.62 for five principal compo-
nents). It thus appeared that PLS regression for the calcare-
ous Cungena soil using the 2750 to 2650 cm−1 region may 
have been adversely affected by the presence of carbonate 
peaks in the 2600 to 2520 cm−1 region of the spectra. 
Clearly, therefore, the 2730 cm−1 peak alone was not able 
to fully model crude oil concentrations spiked into the cal-
careous Cungena soil. With regard to the NIR frequency 
range (4780–4000 cm−1), the precision of THP regres-
sion for the ACU-1 soil was significantly lower than for 
the MIR range (R2 = 0.82). Results for the Cungena soil 
using the NIR were improved compared with those of the 
ACU-1 soil, resulting in an R2 = 0.93. These results sug-
gested that MIR PLS may be capable of accurate predic-

Fig. 4. Fourier-transform infrared spectra of the Cungena and ACU-1 reference 
standard soils. The inset shows details of the overlap of carbonate peaks in the 
Cungena soil with soil organic matter alkyl peaks in the 3100–2700 cm –1 region 
evident in the ACU soil.

Fig. 5. Fourier-transform infrared spectra (mean and standared deviation, SD) of the 
combined set of total petroleum hydrocarbon polluted soils from four sites. The inset 
shows SD plot in the 3100 to 2600 cm−1 region.
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tion of TPH in both calcareous and noncalcareous soils 
using the appropriate frequency regions.

Field-Contaminated Soils
The soils were combined to form a composite set 

for PLS modeling. Because of the very large concen-
tration range and skewed distribution, however, it was 
considered unrealistic to fit a single regression model to 
all the samples. Four sets of samples were therefore se-
lected for PLS modeling: the full range (205 samples, 
0–32,600 mg kg−1), a low-range set (181 samples, 
0–5000 mg kg−1), an intermediate-range set (199 
samples, 0–15,000 mg kg−1), and a high-range set (21 
samples, 5000–32,600 mg kg−1).

There appeared to be a significant difference in the 
first PLS loadings for the low and high TPH ranges 
(0–5000 and 5000–32,600 mg kg−1) in the 3000 to 
2600 cm−1 region (see Fig. 7). Peaks characteristic of 
TPH (peaks at 4954, 2925, and 2854 cm−1) were ob-
served in Loading 1 for the low-range TPH, while the 
strongest peaks for the high TPH range in Loading 1 
were at 2954 to 2914, 2848, and 2730 to 2670 cm−1. The 
cross-validation statistics and regression plots (measured 
vs. PLS-predicted) derived from the air-dried soil models 
are presented in Table 4.

Partial least squares regression for the complete 
set of combined samples, using the NIR in the 4540 to 
4120 cm−1 region and the four MIR spectral ranges in the 
3000 to 2600 cm−1 region, resulted in varying calibration 
precisions ranging from R2 = 0.67 to 0.44. Six samples with high 
leverage were thought to be the cause of poor regression and were 
subsequently omitted from further regression analyses as outliers. 
Two of these (26B in duplicate) had very much higher TPH con-
centrations than the other samples (32,600 mg kg−1 laboratory val-
ue vs. 15,240 mg kg−1 predicted with the 3000–2600 cm−1 high-
range sample set) and were thus possibly outside the range of the 
calibration models based on the remaining majority of samples.

Three samples (12B at 12,100 mg kg−1 laboratory vs. 
3170 mg kg−1 predicted, 30C at 7350 mg kg−1 laboratory vs. 
4531 mg kg−1 predicted, and 30D at 25,800 mg kg−1 labora-

tory vs. 9523 mg kg−1 predicted) had spectral characteristics 
of adsorbed water in the 3500 to 3200 cm−1 range due to very 
high levels of either smectite or natural SOM, which may cause 
sorption of most of the TPH within the soil matrix. The sixth 
sample (ALN-1-1 at 520 mg kg−1 laboratory vs. 6873 mg kg−1 
predicted) was characterized by quartz sand and had an unusual 
alkyl signature with very intense –CH2 peaks but almost no ob-
served –CH3 peak.

The majority of samples (a total of 181) were in the 0 to 
5000 mg kg−1 range and resulted in R2 values of 0.51 (RMSE 
= 702 mg kg−1, RPD = 1.1) for the NIR to 0.75 (RMSE = 
497 mg kg−1, RPD = 2.0) for the 2980 to 2950 plus 2770 to 

Fig. 6. Cross-validation regression coefficients for total petroleum hydrocarbon con-
tents of crude oil sorbed into the ACU-1 soil (solid line) and Cungena soil (dashed 
line) using the (a) near-infrared spectral range and (b) the mid-infrared spectral range.

Table 3. Partial least squares cross-validation statistics for crude oil containing total petroleum hydrocarbon (TCH) spiked into 
the standard soils ACU-1 and Cungena.

Soil n TPH range Spectrum range Spectrum type†
Principal 

components
R2 RMSE

mg kg−1 cm−1 mg kg−1

ACU-1 11 257–25,000 4780–4000 FT-NIR 4 0.82 3097

11 257–25,000 3000–2650 FT-MIR 3 0.96 1433

11 257–25,000 2980–2950 FT-MIR 2 0.95 1681
11 257–25,000 2750–2650 FT-MIR 4 0.93 1888

Cungena 11 257–25,000 4780–4000 FT-NIR 3 0.93 1975

11 257–25,000 3000–2650 FT-MIR 2 0.90 2494
11 257–25,000 2980–2950 FT-MIR 3 0.94 1838
11 257–25,000 2750–2650 FT-MIR 5 0.62 4758

† FT-NIR, Fourier-transform near infrared; FT-MIR, Fourier-transform mid-infrared; R2, coefficient of dermination; RMSE, root mean square error.
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2650 cm−1 range calibration. An RPD = 2 suggested an “indica-
tor” quality prediction model. Extending this range of TPH to 
15,000 mg kg−1 markedly improved the calibration, probably re-
sulting from the inclusion of some highly leveraging samples in the 
5000 to 15,000 mg kg−1 range of TPH. Cross-validation statistics 
now showed a range of R2 from 0.84 (RMSE = 853 mg kg−1, RPD 
= 2.4) for the NIR to 0.93 (RMSE = 564 mg kg−1, RPD = 3.7) 
for the 2980 to 2950 plus 2770 to 2650 cm−1 range calibration. 
The calibration using the full 3000 to 2600 cm−1 spectral range 
gave very similar results, with an R2 = 0.92, RMSE = 601 mg kg−1, 
and RPD = 3.4, and thus both of these MIR calibrations could be 
considered to be of “analytical” quality.

As shown in Table 4, the inclusion of samples in the 5000 
to 15,000 mg kg−1 range of TPH not only improved the R2 of 
the models obtained within the 0 to 5000 mg kg−1 range but also 
increased the RPD, resulting in similar low RMSE values in spite 
of having doubled the TPH range and standard deviation. The re-
gression for the air-dried samples in the 0 to 15,000 mg kg−1 range 
is illustrated in Fig. 8. It is clear from Fig. 8 that most of the samples 
are distributed at low concentrations and only a few at high con-
centrations of TPH.

Fig. 7. The partial least squares first loading weights for the com-
bined contaminated soil set in the mid-infrared spectral range 
(3000–2600 cm−1) for concentration ranges 0 to 5000 mg kg−1 (solid 
line) and 5000 to 32,600 mg kg−1 (dashed line).

Table 4. Partial least squares cross-validation statistics for total petroleum hydrocarbon (TPH) concentration ranges (0–5000, 
5000–32,600, 0–32,600, and 0–15,000 mg kg−1) in the air-dried (AD) and as-received (AR) contaminated soils using models 
derived for the six frequency ranges.

Frequency  
range

Statistic†
AD AR

0–5000 0–15,000 5000–32,600 0–32,600 0–15,000

cm−1

All n 181 199 21 205 199

SD 1002 2102 8601 4185 2102

4540–4120 PCs, no. 9 9 7 9 14

R2 0.51 0.84 0.63 0.44 0.46

RMSE, mg kg−1 702 853 5224 3122 7461

RPD 1.1 2.4 1.5 1.0 1.4

2777–2650 PCs, no. 6 6 8 8 6

R2 0.64 0.85 0.78 0.52 0.80

RMSE, mg kg−1 562 806 4008 2917 1011

RPD 1.7 2.6 2.1 1.4 2.1

2980–2950 PCs, no. 4 3 3 9 2

R2 0.70 0.91 0.14 0.61 0.83

RMSE, mg kg−1 549 621 8272 2631 928

RPD 1.8 3.4 1.0 1.6 2.2

2880–2800 PCs, no. 4 5 10 9 6

R2 0.70 0.90 0.40 0.61 0.86

RMSE, mg kg−1 549 649 7864 2631 852

RPD 1.8 3.2 1.1 1.6 2.5

2�980–2950, 
2777–2650

PCs, no. 8 6 3 11 3

R2 0.75 0.93 0.14 0.67 0.82

RMSE, mg kg−1 497 564 8272 2426 971

RPD 2.0 3.7 1.0 1.7 2.1

3000–2600 PCs, no. 8 7 14 11 5

R2 0.73 0.92 0.46 0.55 0.85

RMSE, mg kg−1 495 601 7461 2860 876
RPD 1.7 3.4 1.4 1.3 2.4

† �n, number of samples; PCs, partial least squares principal components; R2, coefficient of determination; RMSE, root mean square error; RPD, 
residual predictive deviation; SD, standard deviation.
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Modeling the high-range TPH samples, from 5000 to 
32,600 mg kg−1, was clearly a problem and presented difficul-
ties. Table 4 shows that, apart from the NIR (R2 = 0.63, RMSE 
= 5224 mg kg−1, RPD = 1.5) and the 2770 to 2650 cm−1 (R2 
= 0.78, RMSE = 4008 mg kg−1, RPD = 2.1) models, none of 
the other calibration frequency ranges used in this study were 
able to derive a viable PLS model for the high concentrations. 
Values of R2 ranged from near 0 to 0.14 with RPD values of 
about 1.0, reflective of the fact that the usual alkyl spectral 
profile for the low TPH concentration samples was different 
from that of the high-concentration samples (illustrated in Fig. 
7). Also important, particularly at low concentrations, is the 
relatively low signal intensity of the 2770 to 2650 cm−1 peak 
compared with the noise level of the IR spectrometer. Part of 
this noise is due to detector noise, but there are often the very 
weak background peaks caused by uncompensated water vapor 
vibrations superimposed on the spectra of the soils.

At low TPH concentrations, spectral noise can signifi-
cantly downgrade the calibration lower detection limits of the 
2770 to 2650 cm−1 model. Because the spectral signatures of 
these high-concentration samples were in some cases markedly 
different from those of the lower concentration samples calibra-
tion, a separate PLS model for high concentrations was therefore 
required. The model from the MIR 2770 to 2650 cm−1 range 
suggested that it could be considered to be of “indicator” quality, 
while the NIR 4540 to 4120 cm−1 range was only marginally re-
garded as “poor-indicator” quality. Furthermore, it appears that 
the 2770 to 2650 cm−1 range may have the most use in predict-
ing high TPH concentrations rather than the low to medium 
concentrations.

With all MIR frequency ranges capable of producing 
RMSE errors <1000 mg kg−1 for the 0 to 15,000 mg kg−1 con-
centration range, the results suggest that the accuracy of such cal-
ibrations could be regarded as sufficient for screening purposes. 
As illustrated in this study, the IR spectra are highly sensitive to 
TPH compounds and therefore should, in principle, result in ac-
curate predictions. The robustness of the mid-range calibration 
model was further tested by using a randomly selected “test” set 
as a more independent validation for prediction of TPH con-
centrations in the MIR range (3000–2600 cm−1). Prediction 
of the 50 “test” set samples resulted in an R2 = 0.89, RMSE = 
767 mg kg−1, and an RPD = 2.7. As expected, this was slightly 
less precise than that of the cross-validation of the complete set 
of 199 samples (R2 = 0.92, RMSE = 601 mg kg−1, and RPD 
= 3.4) but nevertheless confirmed from the high RPD that the 
prediction model still achieved a good quality.

Our results showed that, in spite of the high R2 values for 
many of the models developed, there are still sources of error that 
affect the model accuracy. It should be noted that, when assessing 
the prediction errors, not all the error is due to the IR calibra-
tions ; a significant component of the error can be attributed to 
the laboratory reference data, possibly due either to attributing 
part of the measured TPH to SOM, to sample heterogeneity 

(Malley et al., 1999), or, in some cases as shown in this study, to 
soil matrix composition.

The scanning of neat, unground or unsieved samples can result 
in major sources of error, often due to inter- and intraparticle sam-
ple heterogeneity. While interparticle heterogeneity can be partly 
addressed by repetitive sample scanning, the effect of intraparticle 
heterogeneity is more difficult to overcome because it is caused by 
a difference in the composition of soil micro- and macroaggregates 
from the outer surface to the depth penetrated by the IR beam.

Further complications can arise from the use of as-received 
field samples. The presence of water in as-is (field-moist) samples 
has been suggested as one source of error in the models developed 
for the prediction of TPH in contaminated soils using NIR, 
with R2 values approximately 0.71 (Malley et al., 1999). Hazel et 
al. (1997), however, demonstrated that MIR spectroscopy could 
be used for identifying and quantifying a fixed concentration of 
marine diesel fuel in soils across a wide range of moisture content 
by using multivariate calibration techniques including principal 
component analysis and PLS regressions. Similar conclusions 
could be taken from the study of Chakraborty et al. (2010), who 
compared the performance of NIR-PLS models for the predic-
tion of TPH in field-moist, air-dried, and air-dried ground soil 
samples. In their investigation, TPH estimated by the field-moist 
intact first-derivative PLS model had the greatest accuracy (R2 = 
0.64), with the worst corresponding to the model using air-dried 
ground samples. These factors may all have implications for the 
use of IR-based reflection methods in direct field application.

As a comparison with the dried samples, and to illustrate 
the effect of using as-received wet field samples on predic-
tion accuracy and precision, Table 4 presents data for the 0 to 
15,000 mg kg−1 TPH range samples modeled in this present 
study using as-received (and often wet) samples. Cross-valida-
tion precision of the as-received calibration was reduced in all 
spectral ranges from that of the air-dry sample set (see Table 4), 
possibly due partly to the effects of reflection from the surface 
films of water and also on the basis of TPH analytical data be-

Fig. 8. Cross-validation predicted vs. laboratory-determined total petroleum 
hydrocarbon (TPH) content (mg kg−1) for 199 air-dried soil samples using 
the mid-infrared region 3000 to 2600 cm−1 at a concentration range of 0 
to 15,000 mg kg−1. The solid line indicates the line of best fit (slope = 0.93, 
intercept = 93, and R2 = 0.92) and the dashed line the 1:1 line.
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ing presented on an air-dry basis. In spite of these reservations, 
the MIR-PLS method for TPH determinations in as-received 
samples appears to be viable. Further research on the effects of 
soil water contents, the treatment of sample heterogeneity and 
spatial variability, wider ranges of TPH concentration, and adap-
tation to hand-held technology still require further study.

CONCLUSIONS
This study confirmed that the use of DRIFT spectroscopy 

with PLS regression was able to provide viable and accurate 
models for the prediction of TPH in the 0 to 15,000 mg kg−1 
concentration range, with the MIR range outperforming the 
NIR region in this study. Initial experiments with two reference 
soils representing contrasting soil properties such as organic mat-
ter and carbonate, demonstrated the ability of PLS regression to 
deal with potential interferences with these compounds for the 
prediction of TPH concentration.

Further experiments with a range of soils from contaminat-
ed sites confirmed the high accuracy achievable with the IR–PLS 
method. The optimum frequencies for regression modeling were 
in the combined 2980 to 2950 and 2777 to 2650 cm−1 spectral 
range, resulting in “analytical” quality calibrations (RPD = 3.7, 
R2 = 0.93, and RMSE = 564). Similar results could be obtained 
for a calibration using the full 3000 to 2600 cm−1 spectral range. 
The use of a separate 2770 to 2650 cm−1 range was required for 
high TPH concentrations, giving an “indicator” quality model. 
A small decrease in precision for wet, as-received soils was shown 
for the 3000 to 2600 cm−1 frequencies.

The peak near 2730 cm−1 was identified as potentially spe-
cific to TPH, with very little overlap with natural SOM and soil 
carbonate. While exclusive use of this peak was successful in the 
prediction of very high TPH concentrations, its effectiveness was 
compromised by the relatively low intensity of this peak at low 
TPH concentrations. It appears that the determination of the 
relative proportion of methyl –CH3 to alkyl –CH2 and the in-
tensity of the methyl peak near 2950 cm−1 was sufficient in most 
cases to overcome any overlap with natural SOM or carbonate.

The technique offers the potential to provide a very rapid 
and inexpensive method to characterize TPH concentrations at 
contaminated sites. Given the specificity of the spectral signa-
tures identified, the method also offers the potential to overcome 
errors in laboratory analysis by GC-FID due to SOM. With a 
range of smaller hand-held IR devices becoming available, the 
method also provides an opportunity to adapt the technique for 
in-field analysis.
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